Search      Hot    Newest Novel
HOME > Short Stories > Pleasant Ways in Science > STAR-GROUPING, STAR-DRIFT, AND STAR-MIST.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
STAR-GROUPING, STAR-DRIFT, AND STAR-MIST.
A Lecture delivered at the Royal Institution on May 6, 1870.

Nearly a century has passed since the greatest astronomer the world has ever known—the Newton of observational astronomy, as he has justly been called by Arago—conceived the daring thought that he would gauge the celestial depths. And because in his day, as indeed in our own, very little was certainly known respecting the distribution of the stars, he was forced to found his researches upon a guess. He supposed that the stars, not only those visible to the naked eye, but all that are seen in the most powerful telescopes, are suns, distributed with a certain general uniformity throughout space. It is my purpose to attempt to prove that—as Sir Wm. Herschel was himself led to suspect during the progress of his researches—this guess was a mistaken one; that but a small proportion of the stars can be regarded as real suns; and that in place of the uniformity of distribution conceived by Sir Wm. Herschel, the chief characteristic of the sidereal system is infinite variety.

In order that the arguments on which these views are based may be clearly apprehended, it will be necessary to recall the main results of Sir Wm. Herschel’s system of star-grouping.

Directing one of his 20-feet reflectors to different parts of137 the heavens, he counted the stars seen in the field of view. Assuming that the telescope really reached the limits of the sidereal system, it is clear that the number of stars seen in any direction affords a means of estimating the relative extension of the system in that direction, provided always that the stars are really distributed throughout the system with a certain approach to uniformity. Where many stars are seen, there the system has its greatest extension; where few, there the limits of the system must be nearest to us.

Sir Wm. Herschel was led by this process of star-grouping to the conclusion that the sidereal system has the figure of a cloven disc. The stars visible to the naked eye lie far within the limits of this disc. Stars outside the relatively narrow limits of the sphere including all the visible stars, are separately invisible. But where the system has its greatest extension these orbs produce collectively the diffused light which forms the Milky Way.

Sir John Herschel, applying a similar series of researches to the southern heavens, was led to a very similar conclusion. His view of the sidereal system differs chiefly in this respect from his father’s, that he considered the stars within certain limits of distance from the sun to be spread less richly through space than those whose united lustre produces the milky light of the galaxy.

Now it is clear that if the supposition on which these views are based is just, the three following results are to be looked for.

In the first place, the stars visible to the naked eye would be distributed with a certain general uniformity over the celestial sphere; so that if on the contrary we find certain extensive regions over which such stars are strewn much more richly than over the rest of the heavens, we must abandon Sir Wm. Herschel’s fundamental hypothesis and all the conclusions which have been based upon it.

In the second place, we ought to find no signs of the aggregation of lucid stars into streams or clustering groups. If we should find such associated groups, we must abandon138 the hypothesis of uniform distribution and all the conclusions founded on it.

Thirdly, and most obviously of all, the lucid stars ought not to be associated in a marked manner with the figure of the Milky Way. To take an illustrative instance. When we look through a glass window at a distant landscape we do not find that the specks in the substance of the glass seem to follow the outline of valleys, hills, trees, or whatever features the landscape may present. In like manner, regarding the sphere of the lucid stars as in a sense the window through which we view the Milky Way, we ought not to find these stars, which are so near to us, associated with the figure of the Milky Way, whose light comes from distances so enormously exceeding those which separate us from the lucid stars. Here again, then, if there should appear signs of such association, we must abandon the theory that the sidereal system is constituted as Sir Wm. Herschel supposed.

It should further be remarked that the three arguments derived from these relations are independent of each other. They are not as three links of a chain, any one of which being broken the chain is broken. They are as three strands of a triple cord. If one strand holds, the cord holds. It may be shown that all three are to be trusted.

It is not to be expected, however, that the stars as actually seen should exhibit these relations, since far the larger number are but faintly visible; so that the eye would look in vain for the signs of law among them, even though law may be there. What is necessary is that maps should be constructed on a uniform and intelligible plan, and that in these maps the faint stars should be made bright, and the bright stars brighter.

The maps exhibited during this discourse [since published as my “Library Atlas”] have been devised for this purpose amongst others. There are twelve of them, but they overlap, so that in effect each covers a tenth part of the heavens. There is first a north-polar map, then five maps symmetrically placed around it; again, there is a139 south-polar map, and five maps symmetrically placed round that map; and these five so fit in with the first five as to complete the enclosure of the whole sphere. In effect, every map of the twelve has five maps symmetrically placed around it and overlapping it.

Since the whole heavens contain but 5932 stars visible to the naked eye, each of the maps should contain on the average about 593 stars. But instead of this being the case, some of the maps contain many more than their just proportion of stars, while in others the number as greatly falls short of the average. One recognizes, by combining these indications, the existence of a roughly circular region, rich in stars, in the northern heavens, and of another, larger and richer, in the southern hemisphere.

To show the influence of these rich regions, it is only necessary to exhibit the numerical relations presented by the maps.

The north-polar map, in which the largest part of the northern rich region falls, contains no less than 693 lucid stars, of which upwards of 400 fall within the half corresponding to the rich region. Of the adjacent maps, two contain upwards of 500 stars, while the remaining three contain about 400 each. Passing to the southern hemisphere, we find that the south-polar map, which falls wholly within a rich region, contains no less than 1132 stars! One of the adjacent maps contains 834 stars, and the four others exhibit numbers ranging from 527 to 595.

It is wholly impossible not to recognize so unequal a distribution as exhibiting the existence of special laws of stellar aggregation.

It is noteworthy, too, that the greater Magellanic cloud falls in the heart of the southern rich region. Were there not other signs that this wonderful object is really associated with the sidereal system, it might be rash to recognize this relation as indicating the existence of a physical connection between the Nubecula Major and the southern region rich in stars. Astronomers have indeed so long regarded the140 Nubecul? as belonging neither to the sidereal nor to the nebular systems, that they are not likely to recognize very readily the existence of any such connection. Yet how strangely perverse is the reasoning which has led astronomers so to regard these amazing objects. Presented fairly, that reasoning amounts simply to this: The Magellanic clouds contain stars and they contain nebul?; therefore they are neither nebular nor stellar. Can perversity of reasoning be pushed further? Is not the obvious conclusion this, that since nebul? and stars are seen to be intermixed in the Nubecul?, the nebular and stellar systems form in reality but one complex system?

As to the existence of star-streams and clustering aggregations, we have also evidence of a decisive character. There is a well-marked stream of stars running from near Capella towards Monoceros. Beyond this lies a long dark rift altogether bare of lucid orbs, beyond which again lies an extensive range of stars, covering Gemini, Cancer, and the southern parts of Leo. This vast system of stars resembles a gigantic sidereal billow flowing towards the Milky Way as towards some mighty shore-line. Nor is this description altogether fanciful; since one of the most marked instances of star-drift presently to be adduced refers to this very region. These associated stars are urging their way towards the galaxy, and that at a rate which, though seemingly slow when viewed from beyond so enormous a gap as separates us from this system, must in reality be estimated by millions of miles in every year.

Other streams and clustering aggregations there are which need not here be specially described. But it is worth noticing that all the well-marked streams recognized by the ancients seem closely associated with the southern rich region already referred to. This is true of the stars forming the River Eridanus, the serpent Hydra, and the streams from the water-can of Aquarius. It is also noteworthy that in each instance a portion of the stream lies outside the rich region, the rest within it; while all the141 streams which lie on the same side of the galaxy tend towards the two Magellanic clouds.

Most intimate signs of association between lucid stars and the galaxy can be recognized—(i.) in the part extending from Cygnus to Aquila; (ii.) in the part from Perseus to Monoceros; (iii.) over the ship Argo; and (iv.) near Crux and the feet of Centaurus.

Before proceeding to the subject of Star-drift, three broad facts may be stated. They are, I believe, now recognized for the first time, and seem decisive of the existence of special laws of distribution among the stars:—

First, the rich southern region, though covering but a sixth part of the heavens, contains one-third of all the lucid stars, leaving only two-thirds for the remaining five-sixths of the heavens.

Secondly, if the two rich regions and the Milky Way be considered as one part of the heavens, the rest as another, then the former part is three times as richly strewn with lucid stars as the second.

Thirdly, the southern hemisphere contains one thousand more lucid stars than the northern, a fact which cannot but be regarded as most striking when it is remembered that the total number of stars visible to ordinary eyesight in both hemispheres falls short of 6000.

Two or three years ago, the idea suggested itself to me that if the proper motions of the stars were examined, they would be found to convey clear information respecting the existence of variety of structure, and special laws of distribution within the sidereal system.

In the first place, the mere amount of a star’s apparent motion must be regarded as affording a means of estimating the star’s distance. The nearer a moving object is, the faster it will seem to move, and vice versa. Of course in individual instances little reliance can be placed on this indication; but by taking the average proper motions of a set of stars, a trustworthy measure may be obtained of their average distance, as compared with the average distance of another set.

142 For example, we have in this process the means of settling the question whether the apparent brightness of a star is indeed a test of relative nearness. According to accepted theories the sixth-magnitude stars are ten or twelve times as far off as those of the first magnitude. Hence their motions should, on the average, be correspondingly small. Now, to make assurance doubly sure, I divided the stars into two sets, the first including the stars of the 1st, 2nd, and 3rd, the second including those of the 4th, 5th, and 6th magnitude. According to accepted views, the average proper motion for the first set should be about five times as great as that for the second. I was prepared to find it about three times as great; that is, not so much greater as the accepted theories require, but still considerably greater. To my surprise, I found that the average proper motion of the brighter orders of stars is barely equal to that of the three lower orders.

This proves beyond all possibility of question that by far the greater number of the fainter orders of stars (I refer here throughout to lucid stars) owe their faintness not to vastness of distance, but to real relative minuteness.

To pass over a number of other modes of research, the actual mapping of the stellar motions, and the discovery of the peculiarity to which I have given the name of star-drift, remain to be considered.

In catalogues it is not easy to recognize any instances of community of motion which may exist among the stars, owing to the method in which the stars are arranged. What is wanted in this case (as in many others which yet remain to be dealt with) is the adoption of a plan by which such relations may be rendered obvious to the eye. The plan I adopted was to attach to each star in my maps a small arrow, indicating the amount and direction of that star’s apparent motion in 36,000 years (the time-interval being purposely lengthened, as otherwise most of the arrows would have been too small to be recognized). When this was done, several well-marked instances of community of motion could immediately be recognized.

143 It is necessary to premise, however, that before the experiment was tried, there were reasons for feeling very doubtful whether it would succeed. A system of stars might really be drifting athwart the heavens, and yet the drift might be rendered unrecognizable through the intermixture of more distant or nearer systems having motions of another sort and seen accidentally in the same general direction.

This was found to be the case, indeed, in several instances. Thus the stars in the constellation Ursa Major, and neighbouring stars in Draco, exhibit two well-marked directions of drift. The stars β, γ, δ, ε, and ζ of the Great Bear, besides two companions of the last-named star, are travelling in one direction, with equal velocity, and clearly form one system. The remaining stars in the neighbourhood are travelling in a direction almost exactly the reverse. But even this relation, thus recognized in a region of diverse motions, is full of interest. Baron M?dler, the well-known German astronomer, recognizing the community of motion between ζ Urs? and its companions, calculated the cyclic revolution of the system to be certainly not less than 7000 years. But when the complete system of stars showing this motion is considered, we get a cyclic period so enormous, that not only the life of man, but the life of the human race, the existence of our earth, nay, even the existence of the solar system, must be regarded as a mere day in comparison with that tremendous cycle.

Then there are other instances of star-drift where, though two directions of motion are not intermixed, the drifting nature of the motion is not at once recognized, because of the various distances at which the associated stars lie from the eye.

A case of this kind is to be met with in the stars forming the constellation Taurus. It was here that M?dler recognized a community of motion among the stars, but he did not interpret this as I do. He had formed the idea that the whole of the sidereal system must be in motion144 around some central point; and for reasons which need not here be considered, he was led to believe that in whatever direction the centre of motion may lie, the stars seen in that general direction would exhibit a community of motion. Then, that he might not have to examine the proper motions all over the heavens, he inquired in what direction (in all probability) the centre of motion may be supposed to lie. Coming to the conclusion that it must lie towards Taurus, he examined the proper motions in that constellation, and found a community of motion which led him to regard Alcyone, the chief star of the Pleiades, as the centre around which the sidereal system is moving. Had he examined further he would have found more marked instances of community of motion in other parts of the heavens, a circumstance which would have at once compelled him to abandon his hypothesis of a central sun in the Pleiades, or at least to lay no stress on the evidence derivable from the community of motion in Taurus.

Perhaps the most remarkable instance of star-drift is that observed in the constellations Gemini and Cancer. Here the stars seem to set bodily towards the neighbouring part of the Milky Way. The general drift in that direction is too marked, and affects too many stars, to be regarded as by any possibility referable to accidental coincidence.

It is worthy of note that if the community of star-drift should be recognized (or I prefer to say, when it is recognized), astronomers will have the means of determining the relative distances of the stars of a drifting system. For differences in the apparent direction and amount of motion can be due but to differences of distance and position, and the determination of these differences becomes merely a question of perspective.18

Before long it is likely that the theory of star-drift will be subjected to a crucial test, since spectroscopic analysis affords the means of determining the stellar motions of145 recess or approach. The task is a very difficult one, but astronomers have full confidence that in the able hands of Mr. Huggins it will be successfully accomplished. I await the result with full confidence that it will confirm my views. (See pages 92–94 for the result.)
* * * * *

Turning to the subject of Star-mist, under which head I include all orders of nebul?, I propose to deal with but a small proportion of the evidence I have collected to prove that none of the nebul? are external galaxies. That evidence has indeed become exceedingly voluminous.

I shall dwell, therefore, on three points only.

First, as to the distribution of the nebul?:—They are not spread with any approach to uniformity over the heavens, but are gathered into streams and clusters. The one great law which characterizes their distribution is an avoidance of the Milky Way and its neighbourhood. This peculiarity has, strangely enough, been regarded by astronomers as showing that there is no association between the nebul? and the sidereal system. They have forgotten that marked contrast is as clear a sign of association as marked resemblance, and has always been so regarded by logicians.

Secondly, there are in the southern heavens two well-marked streams of nebul?. Each of these streams is associated with an equally well-marked stream of stars. Each intermixed stream directs its course towards a Magellanic Cloud, one towards the Nubecula Minor, the other towards the Nubecula Major. To these great clusters they flow, like rivers towards some mighty lake. And within these clusters, which are doubtless roughly spherical in form, there are found intermixed in wonderful profusion, stars, star-clusters, and all the orders of nebul?. Can these coincidences be regarded as accidental? And if not accidental, is not the lesson they clearly teach us this, that nebul? form but portions of the sidereal system, associating themselves with stars on terms of equality (if one may so speak), even if single stars be not more important objects in the scale of146 creation than these nebulous masses, which have been so long regarded as equalling, if not outvying, the sidereal system itself in extent?

The third point to which I wish to invite attention is the way in which in many nebul? stars of considerable relative brightness, and belonging obviously to the sidereal system, are so associated with nebulous masses as to leave no doubt whatever that these masses really cling around them. The association is in many instances far too marked to be regarded as the effect of accident.

Among other instances19 may be cited the nebula round the stars c1 and c2 in Orion. In this object two remarkable nebulous nodules centrally surround two double stars. Admitting the association here to be real (and no other explanation can reasonably be admitted), we are led to interesting conclusions respecting the whole of that wonderful nebulous region which surrounds the sword of Orion. We are led to believe that the other nebul? in that region are really associated with the fixed stars there; that it is not a mere coincidence, for instance, that the middle star in the belt of Orion is involved in nebula, or that the lowest star of the sword is similarly circumstanced. It is a legitimate inference from the evidence that all the nebul? in this region belong to one great nebulous group, which extends its branches to these stars. As a mighty hand, this nebulous region seems to gather the stars here into close association, showing us, in a way there is no misinterpreting, that these stars form one system.

The nebula around the strange variable star, Eta Arg?s, is another remarkable instance of this sort. More than two years ago I ventured to make two predictions about this object. The first was a tolerably safe one. I expressed my belief that the nebula would be found to be gaseous. After Mr. Huggins’s discovery that the great Orion nebula is gaseous, it was not difficult to see that the Argo nebula must147 be so too. At any rate, this has been established by Captain Herschel’s spectroscopic researches. The other prediction was more venturesome. Sir John Herschel, whose opinion on such points one would always prefer to share, had expressed his belief that the nebula lies far out in space beyond the stars seen in the same field of view. I ventured to express the opinion that those stars are involved in the nebula. Lately there came news from Australia that Mr. Le Sueur, with the great reflector erected at Melbourne, has found that the nebula has changed largely in shape since Sir John Herschel observed it. Mr. Le Sueur accordingly expressed his belief that the nebula lies nearer to us than the fixed stars seen in the same field of view. More lately, however, he has found that the star Eta Arg?s is shining with the light of burning hydrogen, and he expresses his belief that the star has consumed the nebulous matter near it. Without agreeing with this view, I recognize in it a proof that Mr. Le Sueur now considers the nebula to be really associated with the stars around it. My belief is that as the star recovers its brilliancy observation will show that the nebula in its immediate neighbourhood becomes brighter (not fainter through being consumed as fuel). In fact, I am disposed to regard the variations of the nebula as systematic, and due to orbital motions among its various portions around neighbouring stars.

As indicative of other laws of association bearing on the relations I have been dealing with, I may mention the circumstance that red stars and variable stars affect the neighbourhood of the Milky Way or of well-marked star-streams. The constellation Orion is singularly rich in objects of this class. It is here that the strange “variable” Betelgeux lies. At present this star shows no sign of variation, but a few years ago it exhibited remarkable changes. One is invited to believe that the star may have been carried by its proper motion into regions where there is a more uniform distribution of the material whence this orb recruits its fires. It may be that in the consideration of such causes of variation affecting148 our sun in long past ages a more satisfactory explanation than any yet obtained may be found of the problem geologists find so perplexing—the former existence of a tropical climate in places within the temperate zone, or even near the Arctic regions.20
* * * * *

It remains that I should exhibit the general results to which I have been led. It has seemed to many that my views tend largely to diminish our estimate of the extent of the sidereal system. The exact reverse is the case. According to accepted views there lie within the range of our most powerful telescopes millions of millions of suns. According to mine the primary suns within the range of our telescopes must be counted by tens of thousands, or by hundreds of thousands at the outside. What does this diminution of numbers imply but that the space separating sun from sun is enormously greater than accepted theories would permit? And this increase implies an enormous increase in the estimate we are to form of the vital energies of individual suns. For the vitality of a sun, if one may be permitted the expression, is measured not merely by the amount of matter over which it exercises control, but by the extent of space within which that matter is distributed. Take an orb a thousand times vaster than our sun, and spread over its surface an amount of matter exceeding a thousandfold the combined mass of all the planets of the solar system:—So far as living force is concerned, the result is—nil. But distribute that matter throughout a vast space all round the orb:—That orb becomes at once fit to be the centre of a host of dependent worlds. Again, according to accepted theories, when the astronomer has succeeded in resolving the milky light of a portion of the galaxy into stars, he has in that direction, at any rate, reached the limits of the sidereal system. According to my views, what he149 has really done has been but to analyze a definite aggregation of stars, a mere corner of that great system. Yet once more, according to accepted views, thousands and thousands of galaxies, external to the sidereal system, can be seen with powerful telescopes. If I am right, the external star-systems lie far beyond the reach of the most powerful telescope man has yet been able to construct, insomuch that perchance the nearest of the outlying galaxies may lie a million times beyond the range even of the mighty mirror of the great Rosse telescope.

But this is little. Wonderful as is the extent of the sidereal system as thus viewed, even more wonderful is its infinite variety. We know how largely modern discoveries have increased our estimate of the complexity of the planetary system. Where the ancients recognized but a few planets, we now see, besides the planets, the families of satellites; we see the rings of Saturn, in which minute satellites must be as the sands on the sea-shore for multitude; the wonderful zone of asteroids; myriads on myriads of comets; millions on millions of meteor-systems, gathering more and more richly around the sun, until in his neighbourhood they form the crown of glory which bursts into view when he is totally eclipsed. But wonderful as is the variety seen within the planetary system, the variety within the sidereal system is infinitely more amazing. Besides the single suns, there are groups and systems and streams of primary suns; there are whole galaxies of minor orbs; there are clustering stellar aggregations, showing every variety of richness, of figure, and of distribution; there are all the various forms of nebul?, resolvable and irresolvable, circular, elliptical, and spiral; and lastly, there are irregular masses of luminous gas, clinging in fantastic convolutions around stars and star-systems. Nor is it unsafe to assert that other forms and variety of structure will yet be discovered, or that hundreds more exist which we may never hope to recognize.

But lastly, even more wonderful than the infinite variety150 of the sidereal system, is its amazing vitality. Instead of millions of inert masses, we see the whole heavens instinct with energy—astir with busy life. The great masses of luminous vapour, though occupying countless millions of cubic miles of space, are moved by unknown forces like clouds before the summer breeze; star-mist is condensing into clusters; star-clusters are forming into suns; streams and clusters of minor orbs are swayed by unknown attractive energies; and primary suns singly or in systems are pursuing their stately path through space, rejoicing as giants to run their course, extending on all sides the mighty arm of their attraction, gathering from ever-new regions of space supplies of motive energy, to be transformed into the various forms of force—light and heat and electricity—and distributed in lavish abundance to the worlds which circle round them.

Truly may I say, in conclusion, that whether we regard its vast extent, its infinite variety, or the amazing vitality which pervades its every portion, the sidereal system is, of all the subjects man can study, the most imposing and the most stupendous. It is as a book full of mighty problems—of problems which are as yet almost untouched by man, of problems which it might seem hopeless for him to attempt to solve. But those problems are given to him for solution, and he will solve them, whenever he dares attempt to decipher aright the records of that wondrous volume.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved