Search      Hot    Newest Novel
HOME > Short Stories > Pleasant Ways in Science > THE PHONOGRAPH, OR VOICE-RECORDER.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
THE PHONOGRAPH, OR VOICE-RECORDER.
In the preceding essay I have described the wonderful instrument called the telephone, which has recently become as widely known in this country as in America, the country of its first development. I propose now briefly to describe another instrument—the phonograph—which, though not a telegraphic instrument, is related in some degree to the telephone. In passing, I may remark that some, who as telegraphic specialists might be expected to know better, have described the phonograph as a telegraphic invention. A writer in the Telegraphic Journal, for instance, who had mistaken for mine a paper on the phonograph in one of our daily newspapers, denounced me (as the supposed author of that paper) for speaking of the possibility of crystallizing sound by means of this instrument; and then went on to speak of the mistake I (that is, said author) had made in leaving my own proper subject of study to speak of telegraphic instruments and to expatiate on the powers of electricity. In reality the phonograph has no relation to telegraphy whatever, and its powers do not in the slightest degree depend on electricity. If the case had been otherwise, it may be questioned whether the student of astronomy, or of any other department of science, should be considered incompetent of necessity to describe a telegraphic instrument, or to discuss the principles of telegraphic or electrical science. What should unquestionably be left to the specialist, is the275 description of the practical effect of details of instrumental construction, and the like—for only he who is in the habit of using special instruments or classes of instrument can be expected to be competent adequately to discuss such matters.

Although, however, the phonograph is not an instrument depending, like the telephone, on the action of electricity (in some form or other), yet it is related closely enough to the telephone to make the mistake of the Telegraphic journalist a natural one. At least, the mistake would be natural enough for any one but a telegraphic specialist; the more so that Mr. Edison is a telegraphist, and that he has effected several important and interesting inventions in telegraphic and electrical science. For instance, in the previous article, pp. 270, 271, I had occasion to describe at some length the principles of his “Motograph.” I spoke of it as “another form of telephone, surpassing Gray’s and La Cour’s in some respects as a conveyer of musical tones, but as yet unable to speak like Bell’s ... in telegraphic communication.” I proceeded: “Gray’s telephone is limited to about one octave. Edison’s extends from the deepest bass notes to the highest notes of the human voice, which, when magnets are employed, are almost inaudible; but it has yet to learn to speak.”

The phonograph is an instrument which has learned to speak, though it does not speak at a distance like the telephone or the motograph. Yet there seems no special reason why it should not combine both qualities—the power of repeating messages at considerable intervals of time after they were originally spoken, and the power of transmitting them to great distances.

I have said that the phonograph is an instrument closely related to the telephone. If we consider this feature of the instrument attentively, we shall be led to the clearer recognition of the acoustical principles on which its properties depend, and also of the nature of some of the interesting acoustical problems on which light seems likely to be thrown by means of experiments with this instrument.

276 In the telephone a stretched membrane, or a diaphragm of very flexible iron, vibrates when words are uttered in its neighbourhood. When a stretched membrane is used, with a small piece of iron at the centre, this small piece of iron, as swayed by the vibrations of the membrane, causes electrical undulations to be induced in the coils round the poles of a magnet placed in front of the membrane. These undulations travel along the wire and pass through the coils of another instrument of similar construction at the other end of the wire, where, accordingly, a stretched membrane vibrates precisely as the first had done. The vibrations of this membrane excite atmospheric vibrations identical in character with those which fell upon the first membrane when the words were uttered in its neighbourhood; and therefore the same words appear to be uttered in the neighbourhood of the second membrane, however far it may be from the transmitting membrane, so only that the electrical undulations are effectually transmitted from the sending to the receiving instrument.

I have here described what happened in the case of that earlier form of the telephone in which a stretched membrane of some such substance as goldbeater’s skin was employed, at the centre of which only was placed a small piece of iron. For in its bearing on the subject of the phonograph, this particular form of telephonic diaphragm is more suggestive than the later form in which very flexible iron was employed. We see that the vibrations of a small piece of iron at the centre of a membrane are competent to reproduce all the peculiarities of the atmospheric waves which fall upon the membrane when words are uttered in its neighbourhood. This must be regarded, I conceive, as a remarkable acoustical discovery. Most students of acoustics would have surmised that to reproduce the motions merely of the central parts of a stretched diaphragm would be altogether insufficient for the reproduction of the complicated series of sound-waves corresponding to the utterance of words. I apprehend that if the problem had originally been suggested277 simply as an acoustical one, the idea entertained would have been this—that though the motions of a diaphragm receiving vocal sound-waves might be generated artificially in such sort as to produce the same vocal sounds, yet this could only be done by first determining what particular points of the diaphragm were centres of motion, so to speak, and then adopting some mechanical arrangements for giving to small portions of the membrane at these points the necessary oscillating motions. It would not, I think, have been supposed that motions communicated to the centre of the diaphragm would suffice to make the whole diaphragm vibrate properly in all its different parts.

Let us briefly consider what was before known about the vibrations of plates, discs, and diaphragms, when particular tones were sounded in their neighbourhood; and also what was known respecting the requirements for vocal sounds and speech as distinguished from simple tones. I need hardly say that I propose only to consider these points in a general, not in a special, manner.

We must first carefully draw a distinction between the vibrations of a plate or disc which is itself the source of sound, and those vibrations which are excited in a plate or disc by sound-waves otherwise originated. If a disc or plate of given size be set in vibration by a blow or other impulse it will give forth a special sound, according to the place where it is struck, or it will give forth combinations of the several tones which it is capable of emitting. On the other hand, experiment shows that a diaphragm like that used in the telephone—not only the electric telephone, but such common telephones as have been sold of late in large quantities in toy shops, etc.—will respond to any sounds which are properly directed towards it, not merely reproducing sounds of different tones, but all the peculiarities which characterize vocal sounds. In the former case, the size of a disc and the conditions under which it is struck determine the nature of its vibrations, and the air responds to the vibrations thus excited; in the latter, the air is set278 moving in vibrations of a special kind by the sounds or words uttered, and the disc or diaphragm responds to these vibrations. Nevertheless, though it is important that this distinction be recognized, we can still learn, from the behaviour of discs and plates set in vibration by a blow or other impulse, the laws according to which the actual motions of the various parts of a vibrating disc or plate take place. We owe to Chladni the invention of a method for rendering visible the nature of such motions.

Certain electrical experiments of Lichtenberg suggested to Chladni the idea of scattering fine sand over the plate or disc whose motions he wished to examine. If a horizontal plate covered with fine sand is set in vibration, those parts which move upwards and downwards scatter the sand from their neighbourhood, while on those points which undergo no change of position the sand will remain. Such points are called nodes; and rows of such points are called nodal lines, which may be either straight or curved, according to circumstances.

If a square plate of glass is held by a suitable clamp at its centre, and the middle point of a side is touched while a bow is drawn across the edge near a corner, the sand is seen to gather in the form of a cross dividing the square into four equal squares—like a cross of St George. If the finger touches a corner, and the bow is drawn across the middle of a side, the sand forms a cross dividing the square along its diagonals—like a cross of St Andrew. Touching two points equidistant from two corners, and drawing the bow along the middle of the opposite edge, we get the diagonal cross and also certain curved lines of sand systematically placed in each of the four quarters into which the diagonals divide the square. We also have, in this case, a far shriller note from the vibrating plate. And so, by various changes in the position of the points clamped by the finger and of the part of the edge along which the bow is drawn, we can obtain innumerable varieties of nodal lines and curves along which the sand gathers upon the surface of the vibrating plate.

279 When we take a circular plate of glass, clamped at the middle, and touching one part of its edge with the finger, draw the bow across a point of the edge half a quadrant from the finger, we see the sand arrange itself along two diameters intersecting at right angles. If the bow is drawn at a point one-third a quadrant from the finger-clamped point, we get a six-pointed star. If the bow is drawn at a point a fourth of a quadrant from the finger-clamped point, we get an eight-pointed star. And so we can get the sand to arrange itself into a star of any even number of points; that is, we can get a star of four, six, eight, ten, twelve, etc., points, but not of three, five, seven, etc.

In these cases the centre of the plate or disc has been fixed. If, instead, the plate or disc be fixed by a clip at the edge, or clamped elsewhere than at the centre, we find the sand arranging itself into other forms, in which the centre may or may not appear; that is, the centre may or may not be nodal, according to circumstances.

A curious effect is produced if very fine powder be strewn along with the sand over the plate. For it is found that the dust gathers, not where the nodes or places of no vibration lie, but where the motion is greatest. Faraday assigns as the cause of this peculiarity the circumstance that “the light powder is entangled by the little whirlwinds of air produced by the vibrations of the plate; it cannot escape from the little cyclones, though the heavier sand particles are readily driven through them; when, therefore, the motion ceases, the light powder settles down in heaps at the places where the vibration was a maximum.” In proof of this theory we have the fact that “in vacuo no such effect is produced; all powders light and heavy move to the nodal lines.” (Tyndall on “Sound.”)

Now if we consider the meaning of such results as these, we shall begin to recognize the perplexing but also instructive character of the evidence derived from the telephone, and applied to the construction of the phonograph. It appears that when a disc is vibrating under such special conditions280 as to give forth a particular series of tones (the so-called fundamental tone of the disc and other tones combined with it which belong to its series of overtones), the various parts of the disc are vibrating to and fro in a direction square to the face of the disc, except certain points at which there is no vibration, these points together forming curves of special forms along the substance of the disc.

When, on the other hand, tones of various kinds are sounded in the neighbourhood of a disc or of a stretched circular membrane, we may assume that the different parts of the disc are set in vibration after a manner at least equally complicated. If the tones belong to the series which could be emitted by the diaphragm when struck, we can understand that the vibrations of the diaphragm would resemble those which would result from a blow struck under special conditions. When other tones are sounded, it may be assumed that the sound-waves which reach the diaphragm cause it to vibrate as though not the circumference (only) but a circle in the substance of the diaphragm—concentric, of course, with the circumference, and corresponding in dimensions with the tone of the sounds—were fixed. If a drum of given size is struck, we hear a note of particular tone. If we heard, as the result of a blow on the same drum, a much higher tone, we should know that in some way or other the effective dimensions of the drum-skin had been reduced—as for instance, by a ring firmly pressed against the inside of the skin. So when a diaphragm is responding to tones other than those corresponding to its size, tension, etc., we infer that the sound-waves reaching it cause it to behave, so far as its effective vibrating portion is concerned, as though its conformation had altered. When several tones are responded to by such a diaphragm, we may infer that the vibrations of the diaphragm are remarkably complicated.

Now the varieties of vibratory motion to which the diaphragm of the telephone has been made to respond have been multitudinous. Not only have all orders of sound singly and together been responded to, but vocal sounds which in281 many respects differ widely from ordinary tones are repeated, and the peculiarities of intonation which distinguish one voice from another have been faithfully reproduced.

Let us consider in what respects vocal sounds, and especially the sounds employed in speech, differ from mere combinations of ordinary tones.

It has been said, and with some justice, that the organ of voice is of the nature of a reed instrument. A reed instrument, as most persons know, is one in which musical sounds are produced by the action of a vibrating reed in breaking up a current of air into a series of short puffs. The harmonium, accordion, concertina, etc., are reed instruments, the reed for each note being a fine strip of metal vibrating in a slit. The vocal organ of man is at the top of the windpipe, along which a continuous current of air can be forced by the lungs. Certain elastic bands are attached to the head of the windpipe, almost closing the aperture. These vocal chords are thrown into vibration by the current of air from the lungs; and as the rate of their vibration is made to vary by varying their tension, the sound changes in tone. So far, we have what corresponds to a reed instrument admitting of being altered in pitch so as to emit different notes. The mouth, however, affects the character of the sound uttered from the throat. The character of a tone emitted by the throat cannot be altered by any change in the configuration of the mouth; so that if a single tone were in reality produced by the vocal chords, the resonance of the mouth would only strengthen that tone more or less according to the figure given to the cavity of the mouth at the will of the singer or speaker. But in reality, besides the fundamental tone uttered by the vocal chords, a series of overtones are produced. Overtones are tones corresponding to vibration at twice, three times, four times, etc., the rate of the vibration producing the fundamental tone. Now the cavity of the mouth can be so modified in shape as to strengthen either the fundamental tone or any one of these overtones. And according as special tones are strengthened in this way282 various vocal sounds are produced, without changing the pitch or intensity of the sound actually uttered. Calling the fundamental tone the first tone, the overtones just mentioned the second, third, fourth, etc., tones respectively (after Tyndall), we find that the following relations exist between the combinations of these tones and the various vowel sounds:—

If the lips are pushed forward so as to make the cavity of the mouth deep and the orifice of the mouth small, we get the deepest resonance of which the mouth is capable, the fundamental tone is reinforced, while the higher tones are as far as possible thrown into the shade. The resulting vowel sound is that of deep U (“oo” in “hoop”).

If the mouth is so far opened that the fundamental tone is accompanied by a strong second tone (the next higher octave to the fundamental tone), we get the vowel sound O (as in “hole”). The third and fourth tones feebly accompanying the first and second make the sound more perfect, but are not necessary.

If the orifice of the mouth is so widened, and the volume of the cavity so reduced, that the fundamental tone is lost, the second somewhat weakened, and the third given as the chief tone, with very weak fourth and fifth tones, we have the vowel sound A.

To produce the vowel sound E, the resonant cavity of the mouth must be considerably reduced. The fourth tone is the characteristic of this vowel. Yet the second tone also must be given with moderate strength. The first and third tones must be weak, and the fifth tone should be added with moderate strength.

To produce the vowel sound A, as in “far,” the higher overtones are chiefly used, the second is wanting altogether, the third feeble, the higher tones—especially the fifth and seventh—strong.

The vowel sound I, as in “fine,” it should be added, is not a simple sound, but diphthongal. The two sounds whose succession gives the sound we represent (erroneously) by a single letter I (long), are not very different from “a” as in283 “far,” and “ee” (or “i” as in “ravine”); they, lie, however, in reality, respectively between “a” in “far” and “fat,” and “i” in “ravine” and “pin.” Thus the tones and overtones necessary for sounding “I” long, do not require a separate description, any more than those necessary for sounding other diphthongs, as “oi,” “oe,” and so forth.

We see, then, that the sound-waves necessary to reproduce accurately the various vowel sounds, are more complicated than those which would correspond to the fundamental tones simply in which any sound may be uttered. There must not only be in each case certain overtones, but each overtone must be sounded with its due degree of strength.

But this is not all, even as regards the vowel sounds, the most readily reproducible peculiarities of ordinary speech. Spoken sounds differ from musical sounds properly so called, in varying in pitch throughout their continuance. So far as tone is concerned, apart from vowel quality, the speech note may be imitated by sliding a finger up the finger-board of a violin while the bow is being drawn. A familiar illustration of the varying pitch of a speech note is found in the utterance of Hamlet’s question, “Pale, or red?” with intense anxiety of inquiry, if one may so speak. “The speech note on the word ‘pale’ will consist of an upward movement of the voice, while that on ‘red’ will be a downward movement, and in both words the voice will traverse an interval of pitch so wide as to be conspicuous to ordinary ears; while the cultivated perception of the musician will detect the voice moving through a less interval of pitch while he is uttering the word ‘or’ of the same sentence. And he who can record in musical notation the sounds which he hears, will perceive the musical interval traversed in these vocal movements, and the place also of these speech notes on the musical staff.” Variations of this kind, only not so great in amount, occur in ordinary speech; and no telephonic or phonographic instrument could be regarded as perfect, or even satisfactory, which did not reproduce them.

284 But the vowel sounds are, after all, combinations and modifications of musical tones. It is otherwise with consonantal sounds, which, in reality, result from various ways in which vowel sounds are commenced, interrupted (wholly or partially), and resumed. In one respect this statement requires, perhaps, some modification—a point which has not been much noticed by writers on vocal sounds. In the case of liquids, vowel sounds are not partially interrupted only, as is commonly stated. They cease entirely as vowel sounds, though the utterance of a vocal sound is continued when a liquid consonant is uttered. Let the reader utter any word in which a liquid occurs, and he will find that while the liquid itself is sounded the vowel sounds preceding or following the liquid cease entirely. Repeating slowly, for example, the word “remain,” dwelling on all the liquids, we find that while the “r” is being sounded the “ē” sound cannot be given, and this sound ceases so soon as the “m” is sounded; similarly the long “a” sound can only be uttered when the “m” sound ceases, and cannot be carried on into the sound of the final liquid “n.” The liquids are, in fact, improperly called semi-vowels, since no vowel sound can accompany their utterance. The tone, however, with which they are sounded can be modified during their utterance. In sounding labials the emission of air is not stopped completely at any moment. The same is true of the sibilants s, z, sh, zh, and of the consonants g, j, f, v, th (hard and soft). These are called, on this account, continuous consonants. The only consonants in pronouncing which the emission of air is for a moment entirely stopped, are the true mutes, sometimes called the six explosive consonants, b, p, t, d, k, and g.

To reproduce artificially sounds resembling those of the consonants in speech, we must for a moment interrupt, wholly for explosive and partially for continuous consonant sounds, the passage of air through a reed pipe. Tyndall thus describes an experiment of this kind in which an imperfect imitation of the sound of the letter “m” was285 obtained—an imitation only requiring, to render it perfect, as I have myself experimentally verified, attention to the consideration respecting liquids pointed out in the preceding paragraph. “Here,” says Tyndall, describing the experiment as conducted during a lecture, “is a free reed fixed in a frame, but without any pipe associated with it, mounted on the acou............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved