Search      Hot    Newest Novel
HOME > Short Stories > Problems of Life and Mind > CHAPTER VIII. THE LAWS OF NERVOUS ACTIVITY.
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER VIII. THE LAWS OF NERVOUS ACTIVITY.
 The foregoing remarks have had the object of showing how little substantial aid Psychology can at present derive from what is known of the elementary structure of the nervous system, indispensable as an accurate knowledge of that structure must be to a complete analysis of its functions. This caution has been specially addressed to those medical and psychological students whose researches leave them insufficient leisure to pursue microscopical investigations for themselves, and who are therefore forced to rely on second-hand knowledge, which is usually defective in the many qualifying considerations which keep scepticism vigilant. Relying on positive statements, and delusive diagrams which only display what the observer imagines, not what he actually sees, they construct on such data theories of disease, or of mental processes; or else they translate observed facts into the terms of this imaginary anatomy, and offer the translation as a new contribution to Science. 162. But little aid as can at present be derived from the teaching of the microscope, some aid Psychology may even now derive from it. The teaching will often serve, for instance, to correct the precipitate conclusions of subjective analysis, which present artificial distinctions as real distinctions, separating what Nature has united. It will show certain organic connections not previously suspected; and since whatever is organically connected311 cannot functionally be separated, such sharply marked analytical distinctions as those of periphery and centre, or of sensation and motion, must be only regarded as artificial aids. The demonstration of the indissoluble union of the tissues is a demonstration of their functional co-operation. So also the anatomical demonstration of the similarity and continuity of all parts of the central system sets aside the analytical separation of one centre from another, except as a convenient artifice; proving that cerebral substance is one with spinal substance, having the same properties, the same laws of action.
For the present, Psychology must seek objective aid from Physiology and Pathology rather than from elementary Anatomy. In the paragraphs which are to follow I shall endeavor to select the chief laws of nervous activity which the researches of physiologists and pathologists disclose. By these laws we may direct and control psychological research.
THE ENERGY OF NEURILITY.
 
163. Vitality is characterized by incessant molecular movement, both of composition and decomposition, in the building up of structure and the liberation of energy. The life of every organism is a complex of changes, each of which directly or indirectly affects the statical and dynamical relations, each being the resultant of many co-operant forces. In the nourishment of every organite there is an accumulation of molecular tension, that is to say, stored-up energy in a latent state, ready to be expended in the activity of that organite; and this expenditure may take place in a steady flow, or in a sudden gush. The molecular movements under one aspect may be called convergent, or formative: they build the structure, and tend to the state of equilibrium which312 we call the statical condition of the organite, i. e. the condition in which it is not active, but ready to act. Perfect equilibrium is of course never attained, owing to the incessant molecular change: indeed Life is inconsistent with complete repose. Under another aspect the molecular movements may be called discharging: they constitute the dynamic condition of the organite, in which its functional activity appears. The energy is now diverted, liberated, and the surplus, over and above that which is absorbed in formation, instead of slowly dribbling off, gushes forth in a directed stream. The slow formation of a secretion in a gland-cell, and the discharge of that secretion, will illustrate this; or (if muscular tone be admitted) the incipient contraction of the chronic state, and the complete contraction of the dynamic state, may also be cited.
164. The discharge which follows excitation may thus be viewed as a directed quantity of molecular movement. Because it is always strictly relative to the energy of tension, and is inevitable when that tension attains a certain surplus over what is required in construction, there is a limit, 1°, to the growth and evolution of every organite, and every organism (comp. Problem I. § 118), and, 2°, to its dynamical effect. When there is no surplus, the organite is incapable of discharge: it is then exhausted, i. e. will not respond to stimulus.
165. The speciality of nerve-tissue is its pre-eminence in directive energy. Like all other tissues, it grows, develops, and dies; but above all others it has what we call excitability, or readiness in discharging its energy in a directed stream. By its topographical distribution it plays the functional part of exciting the activity of other tissues: it transmits molecular disturbance from periphery to centre, from centre to centre, and from centre to muscles, vessels, and glands. When a muscle is313 excited it moves, and when a gland is excited it secretes; but these actions end, so to speak, with themselves; the muscle does not directly move any other muscle;184 the gland does not directly excite any other gland. The nerve, on the contrary, has always a wide-spreading effect; it excites a centre which is continuous with other centres; and in exciting one muscle, usually excites a group. Hence the nervous system is that which binds the different organs into a dynamic unity. And Comparative Anatomy teaches that there is a parallelism between the development of this system and the efficient complexity of the organism. As the tissues become more and more specialized, and the organs more and more individualized, they would become more and more unsuited to the general service of the organism, were it not that a corresponding development of the nervous system brought a unifying mechanism.
The great instability of neurine, in other words, its high degree of tension, renders it especially apt to disturb the tension of other tissues. It is very variable; and this variability will have to be taken into account in explaining the restriction of discharges to particular centres. A good example of exaggerated tension is furnished by strychnine poisoning. The centres are then so readily excitable that a touch, or a puff of cold air on314 the skin, will determine convulsions. And it is worthy of remark that for some hours after this convulsive discharge the centres return to something like their normal state; and the animal may then be stroked, pinched, or blown upon without abnormal reactions. But during this interval the centres are slowly accumulating excess of tension from the poisoned blood; and at the close, convulsions will again follow the slightest stimulus. This alternation of exhaustion and recrudescence is noticed by Schr?der van der Kolk in the periodicity of the phenomena exhibited in spinal disease.185
THE PROPAGATION OF EXCITATION.
 
166. Understanding, then, that the propagation of an excitation depends on the state of tension of the tissue, and always follows the line of least resistance, whichever that may be at the moment, we have to inquire whether the transmission takes place only in one direction, from periphery to centre in sensory nerves, and from centre to periphery in motor nerves? By most physiologists this is answered affirmatively. Indeed a special property has been assigned to each nerve, in virtue of this imaginary limitation of centripetal and centrifugal conduction. The “nerve-current” (accepted as a physical fact, and not simply a metaphor) is supposed to “flow” from the central cells along the motor nerve to the muscles; but by a strange oversight the current is also made to “flow” towards the central cells which are said to produce it! Now although the fact may be, and probably is, that normally the sensory nerve, being stimulated at its peripheral end, propagates the stimulation towards the centre, and the motor nerve propagates its central stimulation towards the periphery, the question whether each nerve is not capable315 of transmission in both directions is not thus answered. A priori it is irrational to assert that nerves fundamentally alike in composition and structure are unlike in properties; and we might as well suppose that a train of gunpowder could only be fired at one end, as to suppose that a nerve could only be excited at one end. And how does the evidence support this a priori conclusion? Dubois Reymond proved that each nerve conducted electricity in both directions; but as Neurility has not been satisfactorily shown to be identical with the electric current, this may not be considered decisive. Such a doubt does not hang over the following facts. M. Paul Bert, pursuing John Hunter’s curious experiments on animal grafting, has grafted the tail of a rat under the skin of the rat’s back, the tip of the tail being inserted under the skin, its base rising into the air, so that there is here an inversion of the normal position. In the course of time Sensibility gradually reappears in this grafted tail; and at the end of about twelve months the rat not only feels when the tail is pinched, but knows where the irritation lies, and turns round to bite the pincers.186 Here we have a case of a sensory nerve reversed, yet transmitting stimulation from the base to the tip of the tail, instead of from the tip to the base, as in a normal organ. Vulpian and Philippeaux having divided two nerves, united the central end of the sensory nerve with the peripheral end of the motor nerve; when the organic union was complete, and each nerve was formed out of the halves of two different nerves, the effect of pinching one of these was to produce simultaneously pain and movement, showing that the excitation was transmitted upwards to the centre, and downwards to the muscles.187 It may be compared with a train316 of gunpowder having a loaded cannon at one end and a bundle of straw at the other, when if a spark be dropped anywhere on this train, the flame runs along in both directions, explodes the cannon, and sets alight the straw.
167. Indeed we have only to remember the semi-liquid nature of the axis cylinder to see at once that it must conduct a wave of motion as readily in one direction as in another. A liquid transmits waves in any direction according to the initial impulse. There is consequently no reason for asserting that because the usual direction is centripetal in a sensory nerve, and centrifugal in a motor nerve, each nerve is incapable of transmitting excitations in both directions. And I think many phenomena are more intelligible on the assumption that neural transmission is in both directions. If the eye is fixed steadfastly on a particular color during some minutes, the retina becomes exhausted, and no longer responds to the stimulus of that color: here the stimulation is of course centripetal. But if instead of looking intently on the color, the mind (in complete absence of light) pictures it intently, this cerebral image is equally capable of exhausting the retina; and unless we believe that color is a cerebral, not a retinal phenomenon (which is my private opinion), we must accept this as proof of a centrifugal excitation of a sensory tract. Another illustration may be drawn from the muscular sense. There may be a few sensory fibres distributed to muscles; but even if the observations of Sachs188 should be confirmed, I do not think that all muscle sensations can be assigned to these fibres, but that the so-called motor fibres must also co-operate. When a nerve317 acts upon a muscle, the muscle reacts on the nerve; and when a nerve acts on a centre, the centre reacts on the nerve. The agitation of the central tissue cannot leave the nerve which blends with it unaffected; the agitation of the muscular tissue must also by a reversal of the “current” affect its nerve. Laplace points out how the movement of the hand which holds a suspended chain is propagated along the chain to its terminus, and if when the chain is at rest we once more set that terminus in motion, the vibration will remount to the hand.189 The contraction of a muscle will not only stimulate the sensory fibres distributed through it, but also, I conceive, stimulate the very motor fibres which caused the contraction, since these fibres blend with the muscle.190
168. To understand this, it is necessary to remember that the stimulation of a nerve does not arise191 in the changed state of that nerve, but in the process of change, i. e. the disturbance of the tension. The duration of the stimulation is that of the changing process, and the intensity increases with the differential of the velocity of change. So that when a nerve which has been excited by a change of state returns to its former state, this return—being another change—is a new excitation. That it318 is not the changed state, but the change, which is operative, explains the fact noted by Brown Séquard: a frog poisoned by strychnine, when decapitated and all respiration destroyed, will remain motionless for days together, if carefully protected from all external excitation; but its nervous system is in such a state of tension all this time that the first touch produces general convulsions. Freusberg also notes that if a brainless frog be suspended by the lower jaw, and one foot be pinched, the other leg is moved at first, then quickly droops again, and remains at rest until the pincers are removed from the pinched foot, when suddenly all four legs are violently moved by the stimulation which the simple removal produces. Let us also add the well-known and significant fact that if a nerve be divided rapidly by a sharp razor, neither sensation nor motion is produced, because the intensity of a stimulus being, to speak mathematically, the function of the changing process, the duration of the process is in this case too brief. On the same ground the application of a stimulus will excite no movement, if the force be very slowly increased from zero to an intensity which will destroy the nerve; but at any stage a sudden increase will excite a movement.
169. We may group all the foregoing considerations in this formula:
Law I. Every neural process is due to a sudden disturbance of the molecular tension. The liberated energy is discharged along the lines of least resistance.
The conditions which determine the lines of least resistance are manifold and variable. The nervous system is a continuous whole, each part of which is connected with diverse organs; but in spite of this anatomical diversity, the deeper uniformity causes the activity of each part to depend on and involve the activity of every other, more319 or less. By “more or less” is meant, that although the excitation of one part necessarily affects the state of all the others, because of their structural community, so that each sensation and each motion really represents a change in the whole organism, yet the responsive discharge determined in each organ by this change, depends on the tension of the organ and its centre at that moment. A bad harvest really affects the whole nation; but its effect is conspicuous on the welfare of the poor rather than of the rich, although the price of bread is the same to rich and poor. Nervous centres, and muscular or glandular organs, differ in their excitability; one condition of this greater excitability being the greater frequency with which they are called into activity. The medulla oblongata is normally more excitable than the medulla spinalis; the heart more than the limbs. Hence a stimulus which will increase the respiration and the pulse may have no appreciable effect on the limbs; but some effect it must have.
170. Imagine all the nerve-centres to be a connected group of bells varying in size. Every agitation of the connecting wire will more or less agitate all the bells; but since some are heavier than others, and some of the cranks less movable, there will be many vibrations of the wire which will cause some bells to sound, others simply to oscillate without sounding, and others not sensibly to oscillate. Even some of the lighter bells will not ring if any external pressure arrests them; or if they are already ringing, the added impulses, not being rhythmically timed, will arrest the ringing. So the stimulus of a sensory nerve agitates its centre, and through it the whole system; usually the stimulation is mainly reflected on the group of muscles innervated from that centre, because this is the readiest path of discharge; but it sometimes does not mainly discharge along this path, the line of least resistance lying in another direction; and the discharge320 never takes this path without also irradiating upwards and downwards through the central tissue. Thus irradiated, it falls into the general stream of neural processes; and according to the state in which the various centres are at the moment it modifies their activity. A nervous shock—physical or mental—sensibly affects all the organs. A severe wound paralyzes, for a time, parts far removed from the wounded spot. A blow on the stomach will arrest the heart; a fright will do the same. Terror relaxes the limbs, or sets them trembling; so does a concussion: if a frog be thrown violently on the ground, all its muscles are convulsed; but if the nerves of one limb be divided before the shock, the muscles of that limb will not be convulsed.
171. We are apt to regard the discharge on the moving organs as if that were the sole response of a stimulation; but although the most conspicuous, it is by no means the most important effect. Besides exciting the muscles, more or less, every neural process has its influence on the organic processes of secretion, and effects thermal and electrical changes. Schiff has demonstrated that every sensation raises the temperature of the brain; Nothnagel, that irritation of a sensory nerve causes constriction of the cerebral arteries, and hence cerebral an?mia. Brown Séquard and Lombard find the temperature of a limb raised when its skin is pinched, and lowered when the skin elsewhere is pinched. Georges Pouchet has shown that fishes change color according to the brightness or darkness of the ground over which they remain; and these changes are dependent on nervous stimulation, mainly through the eye, division of the optic nerves preventing the change. These are so many a posteriori confirmations of what a priori may be foreseen. They are cited here merely to enforce the consideration, seldom adequately kept before the mind, that every neural process is a change which causes other changes in the whole organism.
321
STIMULI.
 
172. Stimuli are classed as external and internal, or physical and physiological. The one class comprises all the agencies in the External Medium which appreciably affect the organism; the other class all the changes in the organism which appreciably disturb the equilibrium of any organ. Although the pressure of the atmosphere, for example, unquestionably affects the organism, and determines organic processes, it is not reckoned as a stimulus unless the effect become appreciable under sudden variations of the pressure. In like manner the blood is not reckoned among the internal stimuli, except when sudden variations in its composition, or its circulation, determine appreciable changes. Because the external stimuli, and the so-called Senses which respond to them, are more conspicuous than the internal stimuli and the Systemic Senses, they have unfortunately usurped too much attention. The massive influence of the Systemic Sensations in determining the desires, volitions, and conceptions of mankind has not been adequately recognized. Yet every one knows the effect of impure air, or a congested liver, in swaying the mental mood; and how a heavy meal interferes with muscular and mental exertion.192 What is conspicuous in such marked effects, is less conspicuously, but not less necessarily, present in slighter stimuli.
173. A constant pressure on the tympanum excites no sound; only a rhythmic alternation of pressures will excite the sensation. A constant temperature is not felt;322 only changes in temperature. If Light and Sound were as uniform as the circulation of the blood, or the pressure of the atmosphere, we should be seldom conscious of the existence of these stimuli. But because the changes are varied and marked, our attention is necessarily arrested by them. The changes going on within the tissues are too graduated to fix the attention; it is only by considering their cumulative effects that we become impressed with their importance. For example, the development of the sexual glands determines conspicuous physical and moral results—we note consequent effects on voice, hair, horns, structure of the skull and size of the muscles, no less than the rise of new feelings, desires, instincts, ideas. Any organic interference with the activity of the ovaries will alter the moral disposition of the animal: suppression of this organic process means non-development of the feelings of maternity; the moral superstructure is absent because its physical basis is wanting.
174. Blood supplies the tissues with their plasmodes; a constant supply of oxygenated blood is therefore necessary to the vitality of the tissues. But it is an error to suppose that oxygen is the special stimulus of nerve-centres, or that their activity depends on their oxidation; on the contrary, the deficiency of oxygen or surplus of carbonic acid is that which stimulates. When saturated with oxygen, the blood paralyzes respiration; when some of the oxygen is withdrawn, respiration revives. Here—as in all other cases—we have to remember that differences in degree readily pass into differences in kind, so that an excess of a stimulus produces a reversal of the effect; thus although surplus of carbonic acid excites respiratory movements, excess of carbonic acid causes Asphyxia. Abundance of blood is requisite for the continuous activity of nerve-centres; but while a temporary deficiency of blood renders them more excitable, too great323 a deficiency paralyzes them. An?mia, which causes great excitability, and convulsions (so that nerves when dying are most irritable), may easily become the cause of the death of the tissue. There are substances which can only be dissolved by a given quantity of liquid; if this quantity be in excess, they are precipitated from the solution. There are vibrations of a given order which cause each string to respond; change the special order, and the string returns to its repose.
In the stillness and darkness of the night we are excluded from most of the external stimuli, yet a massive stream of systemic sensations keeps the sensitive mechanism active, and in sleep directs the dreams. The cramps and epileptiform attacks which occur during sleep are most probably due to the over-excitability produced by surplus carbonic acid. To temporary an?mia may be assigned the strange exaggeration of our sensations during the moments which precede awakening; and the greater vividness of dream-images.
It is only needful to mention in passing the varied stimuli by which cerebral changes act upon the organism. The mention of a name will cause a blush, a brightening of the eye, a quickening of the pulse. The thought of her absent infant will cause a flow of milk in the mother’s breast.
175. We may formulate the foregoing considerations in another law:
Law II. The neural excitation, which is itself a change, directly causes a change in the organ innervated, and indirectly in the whole organism.
The significance of this law is, that although for the convenience of research and exposition we isolate one organ from the rest of the organism, and one process from all the co-operant processes, we have to remember that this is an artifice, and that in reality there is no such separation.
324
STIMULATION.
 
176. Passing now from these general considerations to their special application, we may formulate the law of stimulation:
Law III. A faint or moderate stimulation increases the activity of the organ; but beyond a certain limit, increase of stimulation diminishes, and finally arrests, the activity. Duration of stimulation is equivalent to increase.
A muscle stimulated contracts; if the stimulation be repeated, the muscle becomes tetanized, and in this state has reached its limit; a fresh stimulation then relaxes the muscle. A very faint stimulation of the vagus quickens the pulsation of the heart, but a slight increase, or duration of the stimulation, slackens and arrests the heart.193 Every one knows how a moderate feeling of surprise, pleasure, or pain quickens the heart and the respiration; and how a shock of surprise, joy, grief, or great physical325 pain depresses, and even arrests them. Excess of light is blinding; excess of sound deafening.
177. The nervous system is incessantly stimulated, and variably. Hence a great variation in the excitability of different parts. While the regular and moderate activity of one part is accompanied by a regular flow of blood to it, so that there is a tolerably constant rhythm of nutrition and discharge, any irregular or excessive activity exhausts it, until there has been a nutritive restoration. We can thus understand how one centre may be temporarily exhausted while a neighboring centre is vigorous. Cayrade decapitated a frog, and suspended light weights to each of its hind legs; when either leg was stimulated, the weight attached to it was raised. After each repetition the weight was raised less and less, until finally the weight ceased to be raised: the centre had been exhausted. But now when the other leg, which had been in repose, was stimulated, it energetically contracted, and raised its attached weight; showing that its centre was not exhausted by the action of the other.194
178. This seems in contradiction with the principle that the excitation of one centre is an excitation of all. It also seems in contradiction with the principle urged by Herzen, that irritation of one sciatic nerve diminishes the excitability of the opposite leg; and this again seems contradicted by the principle urged by Setschenow, that although moderate excitation of one sciatic nerve will diminish the excitability of the other, a powerful excitation will increase it.
179. All three principles are, I believe, exact expressions of experimental evidence; and their seeming contradictions may be reconciled on a wider survey of the laws of neural activity, interpreted according to the special326 conditions of each case. These laws may be conveniently classified as laws of Discharge, and Laws of Arrest; the second being only a particular aspect of the first.
THE LAW OF DISCHARGE.
 
180. The physiological independence of organs, together with their intimate dependence in the organism, and the fact that this organism is incessantly stimulated from many sides at once, assure us a priori that the “waves” of molecular movement due to each stimulus must sometimes interfere and sometimes blend with others, thus diverting or neutralizing the final discharge in the one case, and in the other case swelling the current and increasing the energy of the discharge. We are accustomed to speak of one part “playing on another,” sympathizing with another, and so on; but what is the process expressed in these metaphors? When an idea, or a painful sensation, quickens the pulse, or increases the flow of a secretion, we are not to imagine that from a spot in the cerebrum, or the surface, there is a nerve-fibre going directly to the heart, or the gland, transmitting an impulse; in each case the central tissue has been agitated by a sudden change at the stimulated point, and the discharge on heart and gland is the resultant of this agitation along the lines of least resistance. The nerves of the great toe, for example, pass into the spinal cord at a considerable distance from the spot where the nerves of the arm enter it; when, therefore, the great toe is pinched, the arm does not move by direct stimulation of its nerves, but by the indirect stimulation which has traversed the whole central substance.
181. This is intelligible when we know that the whole central substance is continuous throughout; but the difficulty arises when we have to explain why, if this central327 substance is stimulated throughout, only arms and ............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved