Search      Hot    Newest Novel
HOME > Classical Novels > A History of Aeronautics > V THE HORIZONTALLY-OPPOSED ENGINE
Font Size:【Large】【Middle】【Small】 Add Bookmark  
V THE HORIZONTALLY-OPPOSED ENGINE
Among the first internal combustion engines to be taken into use with aircraft were those of the horizontally-opposed four-stroke cycle type, and, in every case in which these engines were used, their excellent balance and extremely even torque rendered them ideal—until the tremendous increase in power requirements rendered the type too long and bulky for placing in the fuselage of an aeroplane. As power increased, there came a tendency toward placing cylinders radially round a central crankshaft, and, as in the case of the early Anzani, it may be said that the radial engine grew out of the horizontal opposed piston type. There were, in 1910—that is, in the early days of small power units, ten different sizes of the horizontally opposed engine listed for manufacture, but increase in power requirements practically ruled out the type for air work.

The Darracq firm were the leading makers of these engines in 1910; their smallest size was a 24 horse-power engine, with two cylinders each of 5·1 inches bore by 4·7 inches stroke. This engine developed its rated power at 1,500 revolutions per minute, and worked out at a weight of 5 lbs. per horse-power. With these engines the cranks are so placed that two regular impulses are given to the crankshaft for each cycle of working, an arrangement which permits of very even balancing of441 the inertia forces of the engine. The Darracq firm also made a four-cylindered horizontal opposed piston engine, in which two revolutions were given to the crankshaft per revolution, at equal angular intervals.

The Dutheil-Chambers was another engine of this type, and had the distinction of being the second largest constructed. At 1,000 revolutions per minute it developed 97 horse-power; its four cylinders were each of 4·93 inches bore by 11·8 inches stroke—an abnormally long stroke in comparison with the bore. The weight—which owing to the build of the engine and its length of stroke was bound to be rather high, actually amounted to 8·2 lbs. per horse-power. Water cooling was adopted, and the engine was, like the Darracq four-cylinder type, so arranged as to give two impulses per revolution at equal angular intervals of crankshaft rotation.

One of the first engines of this type to be constructed in England was the Alvaston, a water-cooled model which was made in 20, 30, and 50 brake horse-power sizes, the largest being a four-cylinder engine. All three sizes were constructed to run at 1,200 revolutions per minute. In this make the cylinders were secured to the crank case by means of four long tie bolts passing through bridge pieces arranged across the cylinder heads, thus relieving the cylinder walls of all longitudinal explosion stresses. These bridge pieces were formed from chrome vanadium steel and milled to an ‘H’ section, and the bearings for the valve-tappet were forged solid with them. Special attention was given to the machining of the interiors of the cylinders and the combustion heads, with the result that the exceptionally high compression of 95 lbs. per square inch442 was obtained, giving a very flexible engine. The cylinder heads were completely water-jacketed, and copper water-jackets were also fitted round the cylinders. The mechanically operated valves were actuated by specially shaped cams, and were so arranged that only two cams were required for the set of eight valves. The inlet valves at both ends of the engine were connected by a single feed-pipe to which the carburettor was attached, the induction piping being arranged above the engine in an easily accessible position. Auxiliary air ports were provided in the cylinder walls so that the pistons overran them at the end of their stroke. A single vertical shaft running in ball-bearings operated the valves and water circulating pump, being driven by spiral gearing from the crankshaft at half speed. In addition to the excellent balance obtained with this engine, the makers claimed with justice that the number of working parts was reduced to an absolute minimum.

In the two-cylinder Darracq, the steel cylinders were machined from solid, and auxiliary exhaust ports, overrun by the piston at the inner end of its stroke, were provided in the cylinder walls, consisting of a circular row of drilled holes—this arrangement was subsequently adopted on some of the Darracq racing car engines. The water jackets were of copper, soldered to the cylinder walls; both the inlet and exhaust valves were located in the cylinder heads, being operated by rockers and push-rods actuated by cams on the half-time shaft driven from one end of the crankshaft. Ignition was by means of a high-tension magneto, and long induction pipes connected the ends of the cylinders to the carburettor, the latter being placed underneath443 the engine. Lubrication was effected by spraying oil into the crank case by means of a pump, and a second pump circulated the cooling water.

Another good example of this type of engine was the Eole, which had eight opposed pistons, each pair of which was actuated by a common combustion chamber at the centre of the engine, two crankshafts bei............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved