Search      Hot    Newest Novel
HOME > Biographical > Edison, His Life and Inventions > CHAPTER IX THE TELEPHONE, MOTOGRAPH, AND MICROPHONE
Font Size:【Large】【Middle】【Small】 Add Bookmark  
CHAPTER IX THE TELEPHONE, MOTOGRAPH, AND MICROPHONE
 A VERY great invention has its own dramatic history. Episodes full of human interest attend its development. The periods of weary struggle, the daring adventure along unknown paths, the clash of rival claimants, are closely similar to those which mark the revelation and subjugation1 of a new continent. At the close of the epoch2 of discovery it is seen that mankind as a whole has made one more great advance; but in the earlier stages one watched chiefly the confused vicissitudes3 of fortune of the individual pioneers. The great modern art of telephony has had thus in its beginnings, its evolution, and its present status as a universal medium of intercourse4, all the elements of surprise, mystery, swift creation of wealth, tragic5 interludes, and colossal6 battle that can appeal to the imagination and hold public attention. And in this new electrical industry, in laying its essential foundations, Edison has again been one of the dominant7 figures.  
As far back as 1837, the American, Page, discovered the curious fact that an iron bar, when magnetized and demagnetized at short intervals8 of time, emitted sounds due to the molecular9 disturbances10 in the mass. Philipp Reis, a simple professor in Germany, utilized11 this principle in the construction of apparatus12 for the transmission of sound; but in the grasp of the idea he was preceded by Charles Bourseul, a young French soldier in Algeria, who in 1854, under the title of "Electrical Telephony," in a Parisian illustrated13 paper, gave a brief and lucid14 description as follows:
 
"We know that sounds are made by vibrations15, and are made sensible to the ear by the same vibrations, which are reproduced by the intervening medium. But the intensity17 of the vibrations diminishes very rapidly with the distance; so that even with the aid of speaking-tubes and trumpets18 it is impossible to exceed somewhat narrow limits. Suppose a man speaks near a movable disk sufficiently19 flexible to lose none of the vibrations of the voice; that this disk alternately makes and breaks the connection with a battery; you may have at a distance another disk which will simultaneously20 execute the same vibrations.... Any one who is not deaf and dumb may use this mode of transmission, which would require no apparatus except an electric battery, two vibrating disks, and a wire."
 
This would serve admirably for a portrayal21 of the Bell telephone, except that it mentions distinctly the use of the make-and-break method (i. e., where the circuit is necessarily opened and closed as in telegraphy, although, of course, at an enormously higher rate), which has never proved practical.
 
So far as is known Bourseul was not practical enough to try his own suggestion, and never made a telephone. About 1860, Reis built several forms of electrical telephonic apparatus, all imitating in some degree the human ear, with its auditory tube, tympanum, etc., and examples of the apparatus were exhibited in public not only in Germany, but in England. There is a variety of testimony22 to the effect that not only musical sounds, but stray words and phrases, were actually transmitted with mediocre23, casual success. It was impossible, however, to maintain the devices in adjustment for more than a few seconds, since the invention depended upon the make-and-break principle, the circuit being made and broken every time an impulse-creating sound went through it, causing the movement of the diaphragm on which the sound-waves impinged. Reis himself does not appear to have been sufficiently interested in the marvellous possibilities of the idea to follow it up—remarking to the man who bought his telephonic instruments and tools that he had shown the world the way. In reality it was not the way, although a monument erected24 to his memory at Frankfort styles him the inventor of the telephone. As one of the American judges said, in deciding an early litigation over the invention of the telephone, a hundred years of Reis would not have given the world the telephonic art for public use. Many others after Reis tried to devise practical make-and-break telephones, and all failed; although their success would have rendered them very valuable as a means of fighting the Bell patent. But the method was a good starting-point, even if it did not indicate the real path. If Reis had been willing to experiment with his apparatus so that it did not make-and-break, he would probably have been the true father of the telephone, besides giving it the name by which it is known. It was not necessary to slam the gate open and shut. All that was required was to keep the gate closed, and rattle25 the latch26 softly. Incidentally it may be noted27 that Edison in experimenting with the Reis transmitter recognized at once the defect caused by the make-and-break action, and sought to keep the gap closed by the use, first, of one drop of water, and later of several drops. But the water decomposed28, and the incurable29 defect was still there.
 
The Reis telephone was brought to America by Dr. P. H. Van der Weyde, a well-known physicist30 in his day, and was exhibited by him before a technical audience at Cooper union, New York, in 1868, and described shortly after in the technical press. The apparatus attracted attention, and a set was secured by Prof. Joseph Henry for the Smithsonian Institution. There the famous philosopher showed and explained it to Alexander Graham Bell, when that young and persevering31 Scotch32 genius went to get help and data as to harmonic telegraphy, upon which he was working, and as to transmitting vocal33 sounds. Bell took up immediately and energetically the idea that his two predecessors35 had dropped—and reached the goal. In 1875 Bell, who as a student and teacher of vocal physiology36 had unusual qualifications for determining feasible methods of speech transmission, constructed his first pair of magneto telephones for such a purpose. In February of 1876 his first telephone patent was applied37 for, and in March it was issued. The first published account of the modern speaking telephone was a paper read by Bell before the American Academy of Arts and Sciences in Boston in May of that year; while at the Centennial Exposition at Philadelphia the public first gained any familiarity with it. It was greeted at once with scientific acclaim38 and enthusiasm as a distinctly new and great invention, although at first it was regarded more as a scientific toy than as a commercially valuable device.
 
By an extraordinary coincidence, the very day that Bell's application for a patent went into the United States Patent Office, a caveat39 was filed there by Elisha Gray, of Chicago, covering the specific idea of transmitting speech and reproducing it in a telegraphic circuit "through an instrument capable of vibrating responsively to all the tones of the human voice, and by which they are rendered audible." Out of this incident arose a struggle and a controversy41 whose echoes are yet heard as to the legal and moral rights of the two inventors, the assertion even being made that one of the most important claims of Gray, that on a liquid battery transmitter, was surreptitiously "lifted" into the Bell application, then covering only the magneto telephone. It was also asserted that the filing of the Gray caveat antedated42 by a few hours the filing of the Bell application. All such issues when brought to the American courts were brushed aside, the Bell patent being broadly maintained in all its remarkable43 breadth and fullness, embracing an entire art; but Gray was embittered44 and chagrined45, and to the last expressed his belief that the honor and glory should have been his. The path of Gray to the telephone was a natural one. A Quaker carpenter who studied five years at Oberlin College, he took up electrical invention, and brought out many ingenious devices in rapid succession in the telegraphic field, including the now universal needle annunciator for hotels, etc., the useful telautograph, automatic self-adjusting relays, private-line printers—leading up to his famous "harmonic" system. This was based upon the principle that a sound produced in the presence of a reed or tuning46-fork responding to the sound, and acting47 as the armature of a magnet in a closed circuit, would, by induction48, set up electric impulses in the circuit and cause a distant magnet having a similarly tuned49 armature to produce the same tone or note. He also found that over the same wire at the same time another series of impulses corresponding to another note could be sent through the agency of a second set of magnets without in any way interfering50 with the first series of impulses. Building the principle into apparatus, with a keyboard and vibrating "reeds" before his magnets, Doctor Gray was able not only to transmit music by his harmonic telegraph, but went so far as to send nine different telegraph messages at the same instant, each set of instruments depending on its selective note, while any intermediate office could pick up the message for itself by simply tuning its relays to the keynote required. Theoretically the system could be split up into any number of notes and semi-tones. Practically it served as the basis of some real telegraphic work, but is not now in use. Any one can realize, however, that it did not take so acute and ingenious a mind very long to push forward to the telephone, as a dangerous competitor with Bell, who had also, like Edison, been working assiduously in the field of acoustic51 and multiple telegraphs. Seen in the retrospect52, the struggle for the goal at this moment was one of the memorable53 incidents in electrical history.
 
Among the interesting papers filed at the Orange Laboratory is a lithograph55, the size of an ordinary patent drawing, headed "First Telephone on Record." The claim thus made goes back to the period when all was war, and when dispute was hot and rife56 as to the actual invention of the telephone. The device shown, made by Edison in 1875, was actually included in a caveat filed January 14, 1876, a month before Bell or Gray. It shows a little solenoid arrangement, with one end of the plunger attached to the diaphragm of a speaking or resonating chamber57. Edison states that while the device is crudely capable of use as a magneto telephone, he did not invent it for transmitting speech, but as an apparatus for analyzing58 the complex waves arising from various sounds. It was made in pursuance of his investigations60 into the subject of harmonic telegraphs. He did not try the effect of sound-waves produced by the human voice until Bell came forward a few months later; but he found then that this device, made in 1875, was capable of use as a telephone. In his testimony and public utterances61 Edison has always given Bell credit for the discovery of the transmission of articulate speech by talking against a diaphragm placed in front of an electromagnet; but it is only proper here to note, in passing, the curious fact that he had actually produced a device that COULD talk, prior to 1876, and was therefore very close to Bell, who took the one great step further. A strong characterization of the value and importance of the work done by Edison in the development of the carbon transmitter will be found in the decision of Judge Brown in the United States Circuit Court of Appeals, sitting in Boston, on February 27, 1901, declaring void the famous Berliner patent of the Bell telephone system. [5]
 
     [Footnote 5: See Federal Reporter, vol. 109, p. 976 et seq.]
Bell's patent of 1876 was of an all-embracing character, which only the make-and-break principle, if practical, could have escaped. It was pointed62 out in the patent that Bell discovered the great principle that electrical undulations induced by the vibrations of a current produced by sound-waves can be represented graphically63 by the same sinusoidal curve that expresses the original sound vibrations themselves; or, in other words, that a curve representing sound vibrations will correspond precisely64 to a curve representing electric impulses produced or generated by those identical sound vibrations—as, for example, when the latter impinge upon a diaphragm acting as an armature of an electromagnet, and which by movement to and fro sets up the electric impulses by induction. To speak plainly, the electric impulses correspond in form and character to the sound vibration16 which they represent. This reduced to a patent "claim" governed the art as firmly as a papal bull for centuries enabled Spain to hold the Western world. The language of the claim is: "The method of and apparatus for transmitting vocal or other sounds telegraphically as herein described, by causing electrical undulations similar in form to the vibrations of the air accompanying the said vocal or other sounds substantially as set forth65." It was a long time, however, before the inclusive nature of this grant over every possible telephone was understood or recognized, and litigation for and against the patent lasted during its entire life. At the outset, the commercial value of the telephone was little appreciated by the public, and Bell had the greatest difficulty in securing capital; but among far-sighted inventors there was an immediate34 "rush to the gold fields." Bell's first apparatus was poor, the results being described by himself as "unsatisfactory and discouraging," which was almost as true of the devices he exhibited at the Philadelphia Centennial. The new-comers, like Edison, Berliner, Blake, Hughes, Gray, Dolbear, and others, brought a wealth of ideas, a fund of mechanical ingenuity66, and an inventive ability which soon made the telephone one of the most notable gains of the century, and one of the most valuable additions to human resources. The work that Edison did was, as usual, marked by infinite variety of method as well as by the power to seize on the one needed element of practical success. Every one of the six million telephones in use in the United States, and of the other millions in use through out the world, bears the imprint67 of his genius, as at one time the instruments bore his stamped name. For years his name was branded on every Bell telephone set, and his patents were a mainstay of what has been popularly called the "Bell monopoly." Speaking of his own efforts in this field, Mr. Edison says:
 
"In 1876 I started again to experiment for the Western union and Mr. Orton. This time it was the telephone. Bell invented the first telephone, which consisted of the present receiver, used both as a transmitter and a receiver (the magneto type). It was attempted to introduce it commercially, but it failed on account of its faintness and the extraneous68 sounds which came in on its wires from various causes. Mr. Orton wanted me to take hold of it and make it commercial. As I had also been working on a telegraph system employing tuning-forks, simultaneously with both Bell and Gray, I was pretty familiar with the subject. I started in, and soon produced the carbon transmitter, which is now universally used.
 
"Tests were made between New York and Philadelphia, also between New York and Washington, using regular Western union wires. The noises were so great that not a word could be heard with the Bell receiver when used as a transmitter between New York and Newark, New Jersey69. Mr. Orton and W. K. Vanderbilt and the board of directors witnessed and took part in the tests. The Western union then put them on private lines. Mr. Theodore Puskas, of Budapest, Hungary, was the first man to suggest a telephone exchange, and soon after exchanges were established. The telephone department was put in the hands of Hamilton McK. Twombly, Vanderbilt's ablest son-in-law, who made a success of it. The Bell company, of Boston, also started an exchange, and the fight was on, the Western union pirating the Bell receiver, and the Boston company pirating the Western union transmitter. About this time I wanted to be taken care of. I threw out hints of this desire. Then Mr. Orton sent for me. He had learned that inventors didn't do business by the regular process, and concluded he would close it right up. He asked me how much I wanted. I had made up my mind it was certainly worth $25,000, if it ever amounted to anything for central-station work, so that was the sum I had in mind to stick to and get—obstinately. Still it had been an easy job, and only required a few months, and I felt a little shaky and uncertain. So I asked him to make me an offer. He promptly70 said he would give me $100,000. 'All right,' I said. 'It is yours on one condition, and that is that you do not pay it all at once, but pay me at the rate of $6000 per year for seventeen years'—the life of the patent. He seemed only too pleased to do this, and it was closed. My ambition was about four times too large for my business capacity, and I knew that I would soon spend this money experimenting if I got it all at once, so I fixed71 it that I couldn't. I saved seventeen years of worry by this stroke."
 
Thus modestly is told the debut72 of Edison in the telephone art, to which with his carbon transmitter he gave the valuable principle of varying the resistance of the transmitting circuit with changes in the pressure, as well as the vital practice of using the induction coil as a means of increasing the effective length of the talking circuit. Without these, modern telephony would not and could not exist. [6] But Edison, in telephonic work, as in other directions, was remarkably73 fertile and prolific74. His first inventions in the art, made in 1875-76, continue through many later years, including all kinds of carbon instruments —the water telephone, electrostatic telephone, condenser75 telephone, chemical telephone, various magneto telephones, inertia76 telephone, mercury telephone, voltaic pile telephone, musical transmitter, and the electromotograph. All were actually made and tested.
 
     [Footnote 6: Briefly77 stated, the essential difference
     between Bell's telephone and Edison's is this: With the
     former the sound vibrations impinge upon a steel diaphragm
     arranged adjacent to the pole of a bar electromagnet,
     whereby the diaphragm acts as an armature, and by its
     vibrations induces very weak electric impulses in the
     magnetic coil. These impulses, according to Bell's theory,
     correspond in form to the sound-waves, and passing over the
     line energize78 the magnet coil at the receiving end, and by
     varying the magnetism79 cause the receiving diaphragm to be
     similarly vibrated to reproduce the sounds. A single
     apparatus is therefore used at each end, performing the
     double function of transmitter and receiver. With Edison's
     telephone a closed circuit is used on which is constantly
     flowing a battery current, and included in that circuit is a
     pair of electrodes, one or both of which is of carbon. These
     electrodes are always in contact with a certain initial
     pressure, so that current will be always flowing over the
     circuit. One of the electrodes is connected with the
     diaphragm on which the sound-waves impinge, and the
     vibration of this diaphragm causes the pressure between the
     electrodes to be correspondingly varied80, and thereby81 effects
     a variation in the current, resulting in the production of
     impulses which actuate the receiving magnet. In other words,
     with Bell's telephone the sound-waves themselves generate
     the electric impulses, which are hence extremely faint. With
     the Edison telephone, the sound-waves actuate an electric
     valve, so to speak, and permit variations in a current of
     any desired strength.
 
     A second distinction between the two telephones is this:
     With the Bell apparatus the very weak electric impulses
     generated by the vibration of the transmitting diaphragm
     pass over the entire line to the receiving end, and in
     consequence the permissible82 length of line is limited to a
     few miles under ideal conditions. With Edison's telephone
     the battery current does not flow on the main line, but
     passes through the primary circuit of an induction coil, by
     which corresponding impulses of enormously higher potential
     are sent out on the main line to the receiving end. In
     consequence, the line may be hundreds of miles in length. No
     modern telephone system in use to-day lacks these
     characteristic features—the varying resistance and the
     induction coil.]
The principle of the electromotograph was utilized by Edison in more ways than one, first of all in telegraphy at this juncture83. The well-known Page patent, which had lingered in the Patent Office for years, had just been issued, and was considered a formidable weapon. It related to the use of a retractile spring to withdraw the armature lever from the magnet of a telegraph or other relay or sounder, and thus controlled the art of telegraphy, except in simple circuits. "There was no known way," remarks Edison, "whereby this patent could be evaded85, and its possessor would eventually control the use of what is known as the relay and sounder, and this was vital to telegraphy. Gould was pounding the Western union on the Stock Exchange, disturbing its railroad contracts, and, being advised by his lawyers that this patent was of great value, bought it. The moment Mr. Orton heard this he sent for me and explained the situation, and wanted me to go to work immediately and see if I couldn't evade84 it or discover some other means that could be used in case Gould sustained the patent. It seemed a pretty hard job, because there was no known means of moving a lever at the other end of a telegraph wire except by the use of a magnet. I said I would go at it that night. In experimenting some years previously86, I had discovered a very peculiar87 phenomenon, and that was that if a piece of metal connected to a battery was rubbed over a moistened piece of chalk resting on a metal connected to the other pole, when the current passed the friction88 was greatly diminished. When the current was reversed the friction was greatly increased over what it was when no current was passing. Remembering this, I substituted a piece of chalk rotated by a small electric motor for the magnet, and connecting a sounder to a metallic89 finger resting on the chalk, the combination claim of Page was made worthless. A hitherto unknown means was introduced in the electric art. Two or three of the devices were made and tested by the company's expert. Mr. Orton, after he had me sign the patent application and got it in the Patent Office, wanted to settle for it at once. He asked my price. Again I said: 'Make me an offer.' Again he named $100,000. I accepted, providing he would pay it at the rate of $6000 a year for seventeen years. This was done, and thus, with the telephone money, I received $12,000 yearly for that period from the Western union Telegraph Company."
 
A year or two later the motograph cropped up again in Edison's work in a curious manner. The telephone was being developed in England, and Edison had made arrangements with Colonel Gouraud, his old associate in the automatic telegraph, to represent his interests. A company was formed, a large number of instruments were made and sent to Gouraud in London, and prospects90 were bright. Then there came a threat of litigation from the owners of the Bell patent, and Gouraud found he could not push the enterprise unless he could avoid using what was asserted to be an infringement91 of the Bell receiver. He cabled for help to Edison, who sent back word telling him to hold the fort. "I had recourse again," says Edison, "to the phenomenon discovered by me years previous, that the friction of a rubbing electrode passing over a moist chalk surface was varied by electricity. I devised a telephone receiver which was afterward92 known as the 'loud-speaking telephone,' or 'chalk receiver.' There was no magnet, simply a diaphragm and a cylinder93 of compressed chalk about the size of a thimble. A thin spring connected to the centre of the diaphragm extended outwardly and rested on the chalk cylinder, and was pressed against it with a pressure equal to that which would be due to a weight of about six pounds. The chalk was rotated by hand. The volume of sound was very great. A person talking into the carbon transmitter in New York had his voice so amplified94 that he could be heard one thousand feet away in an open field at Menlo Park. This great excess of power was due to the fact that the latter came from the person turning the handle. The voice, instead of furnishing all the power as with the present receiver, merely controlled the power, just as an engineer working a valve would control a powerful engine.
 
"I made six of these receivers and sent them in charge of an expert on the first steamer. They were welcomed and tested, and shortly afterward I shipped a hundred more. At the same time I was ordered to send twenty young men, after teaching them to become expert. I set up an exchange, around the laboratory, of ten instruments. I would then go out and get each one out of order in every conceivable way, cutting the wires of one, short-circuiting another, destroying the adjustment of a third, putting dirt between the electrodes of a fourth, and so on. A man would be sent to each to find out the trouble. When he could find the trouble ten consecutive96 times, using five minutes each, he was sent to London. About sixty men were sifted97 to get twenty. Before all had arrived, the Bell company there, seeing we could not be stopped, entered into negotiations98 for consolidation99. One day I received a cable from Gouraud offering '30,000' for my interest. I cabled back I would accept. When the draft came I was astonished to find it was for L30,000. I had thought it was dollars."
 
In regard to this singular and happy conclusion, Edison makes some interesting comments as to the attitude of the courts toward inventors, and the difference between American and English courts. "The men I sent over were used to establish telephone exchanges all over the Continent, and some of them became wealthy. It was among this crowd in London that Bernard Shaw was employed before he became famous. The chalk telephone was finally discarded in favor of the Bell receiver—the latter being more simple and cheaper. Extensive litigation with new-comers followed. My carbon-transmitter patent was sustained, and preserved the monopoly of the telephone in England for many years. Bell's patent was not sustained by the courts. Sir Richard Webster, now Chief-Justice of England, was my counsel, and sustained all of my patents in England for many years. Webster has a marvellous capacity for understanding things scientific; and his address before the courts was lucidity100 itself. His brain is highly organized. My experience with the legal fraternity is that scientific subjects are distasteful to them, and it is rare in this country, on account of the system of trying patent suits, for a judge really to reach the meat of the controversy, and inventors scarcely ever get a decision squarely and entirely101 in their favor. The fault rests, in my judgment102, almost wholly with the system under which testimony to the extent of thousands of pages bearing on all conceivable subjects, many of them having no possible connection with the invention in dispute, is presented to an over-worked judge in an hour or two of argument supported by several hundred pages of briefs; and............
Join or Log In! You need to log in to continue reading
   
 

Login into Your Account

Email: 
Password: 
  Remember me on this computer.

All The Data From The Network AND User Upload, If Infringement, Please Contact Us To Delete! Contact Us
About Us | Terms of Use | Privacy Policy | Tag List | Recent Search  
©2010-2018 wenovel.com, All Rights Reserved